Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 3319


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Scalar potential model of redshift and discrete redshift
On the galactic scale the universe is inhomogeneous and redshift z isoccasionally less than zero. A scalar potential model (SPM) that linksthe galaxy scale z to the cosmological scale z of the Hubble Law ispostulated. Several differences among galaxy types suggest that spiralgalaxies are Sources and that early type, lenticular, and irregulargalaxies are Sinks of a scalar potential field. The morphology-radiusand the intragalactic medium cluster observations support the movementof matter from Source galaxies to Sink galaxies. A cell structure ofgalaxy groups and clusters is proposed to resolve a paradox concerningthe scalar potential like the Olber’s paradox concerning light.For the sample galaxies, the ratio of the luminosity of Source galaxiesto the luminosity of Sink galaxies approaches 2.7 ± 0.1. Anequation is derived from sample data, which is anisotropic andinhomogeneous, relating z of and the distance D to galaxies. Thecalculated z has a correlation coefficient of 0.88 with the measured zfor a sample of 32 spiral galaxies with D calculated using Cepheidvariable stars. The equation is consistent with z < 0 observations ofclose galaxies. At low cosmological distances, the equation reduces to z≈ exp(KD)‑1 ≈ KD, where K is a constant, positive value. Theequation predicts z from galaxies over 18 Gpc distant approaches aconstant value on the order of 500. The SPM of z provides a physicalbasis for the z of particle photons. Further, the SPM qualitativelysuggests the discrete variations in z, which was reported by Tifft[Tifft, W.G., 1997. Astrophy. J. 485, 465] and confirmed by others, areconsistent with the SPM.

Cepheid Distances to SNe Ia Host Galaxies Based on a Revised Photometric Zero Point of the HST WFPC2 and New PL Relations and Metallicity Corrections
With this paper we continue the preparation for a forthcoming summaryreport of our experiment with the HST to determine the Hubble constantusing Type Ia supernovae as standard candles. Two problems areaddressed. (1) We examine the need for, and determine the value of, thecorrections to the apparent magnitudes of our program Cepheids in the 11previous calibration papers due to sensitivity drifts and chargetransfer effects of the HST WFPC2 camera over the life time of theexperiment from 1992 to 2001. (2) The corrected apparent magnitudes areapplied to all our previous photometric data from which revised distancemoduli are calculated for the eight program galaxies that are parents tothe calibrator Ia supernovae. Two different Cepheid P-L relations areused; one for the Galaxy and one for the LMC. These differ both in slopeand zero point at a fixed period. The procedures for determining theabsorption and reddening corrections for each Cepheid are discussed.Corrections for the effects of metallicity differences between theprogram galaxies and the two adopted P-L relations are derived andapplied. The distance moduli derived here for the eight supernovaeprogram galaxies, and for 29 others, average 0.20 mag fainter (moredistant) than those derived by Gibson et al. and Freedman et al. intheir 2000 and 2001 summary papers for reasons discussed in this paper.The effect on the Hubble constant is the subject of our forthcomingsummary paper.

Dark and Baryonic Matter in Bright Spiral Galaxies. I. Near-Infrared and Optical Broadband Surface Photometry of 30 Galaxies
We present photometrically calibrated images and surface photometry inthe B, V, R, J, H, and K bands of 25, and in the g, r, and K bands offive nearby bright (B0T<12.5 mag) spiralgalaxies with inclinations of 30°-65° spanning the Hubblesequence from Sa to Scd. Data are from The Ohio State University BrightSpiral Galaxy Survey, the Two Micron All Sky Survey, and the SloanDigital Sky Survey Second Data Release. Radial surface brightnessprofiles are extracted, and integrated magnitudes are measured from theprofiles. Axis ratios, position angles, and scale lengths are measuredfrom the near-infrared images. A one-dimensional bulge/diskdecomposition is performed on the near-infrared images of galaxies witha nonnegligible bulge component, and an exponential disk is fit to theradial surface brightness profiles of the remaining galaxies.Based in part on observations obtained at the Cerro TololoInter-American Observatory, operated by the Association of Universitiesfor Research in Astronomy, Inc., under a cooperative agreement with theNational Science Foundation.

Dark and Baryonic Matter in Bright Spiral Galaxies. II. Radial Distributions for 34 Galaxies
We decompose the rotation curves of 34 bright spiral galaxies intobaryonic and dark matter components. Stellar mass profiles are createdby applying color-M/L relations to near-infrared and optical photometry.We find that the radial profile of the baryonic-to-dark-matter ratio isself-similar for all galaxies, when scaled to the radius at which thecontribution of the baryonic mass to the rotation curve equals that ofthe dark matter (RX). We argue that this is due to thequasi-exponential nature of disks and rotation curves that are nearlyflat after an initial rise. The radius RX is found tocorrelate most strongly with baryonic rotation speed, such that galaxieswith RX measurements that lie further out in their disksrotate faster. This quantity also correlates very strongly with stellarmass, Hubble type, and observed rotation speed; B-band central surfacebrightness is less related to RX than these other galaxyproperties. Most of the galaxies in our sample appear to be close tomaximal disk. For these galaxies, we find that maximum observed rotationspeeds are tightly correlated with maximum rotation speeds predictedfrom the baryon distributions, such that one can create a Tully-Fisherrelation based on surface photometry and redshifts alone. Finally, wecompare our data to the NFW parameterization for dark matter profileswith and without including adiabatic contraction as it is most commonlyimplemented. Fits are generally poor, and all but two galaxies arebetter fit if adiabatic contraction is not performed. In order to havebetter fits, and especially to accommodate adiabatic contraction,baryons would need to contribute very little to the total mass in theinner parts of galaxies, seemingly in contrast with other observationalconstraints.

The extragalactic Cepheid bias: a new test using the period-luminosity-color relation
We use the Period-Luminosity-Color relation (PLC) for Cepheids to testfor the existence of a bias in extragalactic distances derived from theclassical Period-Luminosity (PL) relation. We calculate the parametersof the PLC using several galaxies observed with the Hubble SpaceTelescope and show that this calculation must be conducted with a PLCwritten in a form where the parameters are independent. The coefficientsthus obtained are similar to those derived from theoretical models.Calibrating with a few unbiased galaxies, we apply this PLC to allgalaxies of the Hubble Space Telescope Key Program (HSTKP) and comparethe distance moduli with those published by the HSTKP team. The newdistance moduli are larger (more exactly, the larger the distance thelarger the difference), consistent with a bias. Further, the bias trendthat is observed is the same previously obtained from two independentmethods based either on the local Hubble law or on a theoretical modelof the bias. The results are quite stable but when we force the PLCrelation closer to the classical PL relation by using unrealisticparameters, the agreement with HSTKP distance moduli is retrieved. Thisalso suggests that the PL relation leads to biased distance moduli. Thenew distance moduli reduce the scatter in the calibration of theabsolute magnitude of supernovae SNIa at their maximum. This may alsosuggest that the relation between the amplitude at maximum and the decayof the light curve Δ m15 may not be as strong asbelieved.

The AMIGA sample of isolated galaxies. II. Morphological refinement
We present a refinement of the optical morphologies for galaxies in theCatalog of Isolated Galaxies that forms the basis of the AMIGA (Analysisof the interstellar Medium of Isolated GAlaxies) project. Uniformreclassification using the digitized POSS II data benefited from thehigh resolution and dynamic range of that sky survey. Comparison withindependent classifications made for an SDSS overlap sample of more than200 galaxies confirms the reliability of the early vs. late-typediscrimination and the accuracy of spiral subtypes within Δ T =1-2. CCD images taken at the Observatorio de Sierra Nevada were alsoused to solve ambiguities in early versus late-type classifications. Aconsiderable number of galaxies in the catalog (n = 193) are flagged forthe presence of nearby companions or signs of distortion likely due tointeraction. This most isolated sample of galaxies in the local Universeis dominated by two populations: 1) 82% are spirals (Sa-Sd) with thebulk being luminous systems with small bulges (63% between types Sb-Sc)and 2) a significant population of early-type E-S0 galaxies (14%). Mostof the types later than Sd are low luminosity galaxies concentrated inthe local supercluster where isolation is difficult to evaluate. Thelate-type spiral majority of the sample spans a luminosity rangeMB-corr = -18 to -22 mag. Few of the E/S0 population are moreluminous than -21.0 marking the absence of the often-sought superL* merger (e.g. fossil elliptical) population. The rarity ofhigh luminosity systems results in a fainter derived M* forthis population compared to the spiral optical luminosity function(OLF). The E-S0 population is from 0.2 to 0.6 mag fainter depending onhow the sample is defined. This marks the AMIGA sample as unique amongsamples that compare early and late-type OLFs separately. In othersamples, which always involve galaxies in higher density environments,M^*_E/S0 is almost always 0.3-0.5 mag brighter than M^*_S, presumablyreflecting a stronger correlation between M* andenvironmental density for early-type galaxies.

GHASP: an Hα kinematic survey of spiral and irregular galaxies - IV. 44 new velocity fields. Extension, shape and asymmetry of Hα rotation curves
We present Fabry-Perot observations obtained in the frame of the GHASPsurvey (Gassendi HAlpha survey of SPirals). We have derived the Hαmap, the velocity field and the rotation curve for a new set of 44galaxies. The data presented in this paper are combined with the datapublished in the three previous papers providing a total number of 85 ofthe 96 galaxies observed up to now. This sample of kinematical data hasbeen divided into two groups: isolated (ISO) and softly interacting(SOFT) galaxies. In this paper, the extension of the Hα discs, theshape of the rotation curves, the kinematical asymmetry and theTully-Fisher relation have been investigated for both ISO and SOFTgalaxies. The Hα extension is roughly proportional toR25 for ISO as well as for SOFT galaxies. The smallestextensions of the ionized disc are found for ISO galaxies. The innerslope of the rotation curves is found to be correlated with the centralconcentration of light more clearly than with the type or thekinematical asymmetry, for ISO as well as for SOFT galaxies. The outerslope of the rotation curves increases with the type and with thekinematical asymmetry for ISO galaxies but shows no special trend forSOFT galaxies. No decreasing rotation curve is found for SOFT galaxies.The asymmetry of the rotation curves is correlated with themorphological type, the luminosity, the (B-V) colour and the maximalrotational velocity of galaxies. Our results show that the brightest,the most massive and the reddest galaxies, which are fast rotators, arethe least asymmetric, meaning that they are the most efficient withwhich to average the mass distribution on the whole disc. Asymmetry inthe rotation curves seems to be linked with local star formation,betraying disturbances of the gravitational potential. The Tully-Fisherrelation has a smaller slope for ISO than for SOFT galaxies.

Imprints of spiral arms in the oxygen distribution over the galactic disc
A theory for the oxygen abundance radial distribution formation in thegalactic disc of a spiral galaxy is developed. We take into account thatthe main sources of oxygen are Type II supernovae (SN II), theprogenitors of which are massive short-lived stars strongly concentratedin the spiral arms. Hence oxygen is the most sensitive indicator ofspiral arms' influence on galactic disc enrichment by heavy elements.Various models for the spiral density waves were analysed. We predictthat the imprints in the oxygen radial distribution will enable us todistinguish between different models for spiral patterns. Among otherparameters, the corotation radius happens to be one of the mostimportant.

FUSE Observations of Interstellar and Intergalactic Absorption toward the X-Ray-bright BL Lacertae Object Markarian 421
High-quality Far Ultraviolet Spectroscopic Explorer (FUSE) observationsat 20 km s-1 resolution of interstellar and intergalacticabsorption from 910 to 1187 Å are presented for the X-ray-brightBL Lac object Mrk 421. These observations are supplemented with FUSEdata for the distant halo stars BD +38°2182 and HD 93521 near theMrk 421 line of sight, in order to obtain information about the distanceto absorbing structures in the Milky Way toward Mrk 421. The FUSE ISMobservations provide measures of absorption by O VI and many otherspecies commonly found in warm neutral and warm ionized gas, including HI, C II, C III, O I, N I, N II, Fe II, and Fe III. In this study weconsider the O VI absorption between -140 and 165 km s-1 andits relationship to the lower ionization absorption and strongabsorption produced by O VII and O VIII at X-ray wavelengths. The O VIabsorption extending from -140 to 60 km s-1 is associatedwith strong low-ionization gas absorption and originates in the Galacticthick disk/halo. This O VI appears to be produced by a combination ofprocesses, including conductive interfaces between warm and hot gas andpossibly cooling Galactic fountain gas and hot halo gas bubbles. The OVI absorption extending from 60 to 165 km s-1 has unusualionization properties in that there is very little associatedlow-ionization absorption, with the exception of C III. This absorptionis not observed toward the two halo stars, implying that it occurs ingas more distant than 3.5 kpc from the Galactic disk. Over the 60-165 kms-1 velocity range, O VI and C III absorption have the samekinematic behavior. The ratio N(OVI)/N(CIII)=10+/-3 over the 60-120 kms-1 velocity range. Given the association of O VI with C III,it is unlikely that the high-velocity O VI coexists with the hotter gasresponsible for the O VII and O VIII absorption. The O VI positivevelocity absorption wing might be tracing cooler gas entrained in a hotGalactic fountain outflow. The O VII and O VIII absorption observed byChandra and XMM-Newton may trace the hot gas in a highly extended (~100kpc) Galactic corona or hot gas in the Local Group. The low resolutionof the current X-ray observations (~750-900 km s-1) and thekinematical complexity of the O VI absorption along typical lines ofsight through the Milky Way halo make it difficult to clearly associatethe O VI absorption with that produced by O VII and O VIII. A search formetal lines associated with the Lyα absorber at z=0.01, which issituated in a galactic void, was unsuccessful.

The Distribution of Bar and Spiral Arm Strengths in Disk Galaxies
The distribution of bar strengths in disk galaxies is a fundamentalproperty of the galaxy population that has only begun to be explored. Wehave applied the bar-spiral separation method of Buta and coworkers toderive the distribution of maximum relative gravitational bar torques,Qb, for 147 spiral galaxies in the statistically well-definedOhio State University Bright Galaxy Survey (OSUBGS) sample. Our goal isto examine the properties of bars as independently as possible of theirassociated spirals. We find that the distribution of bar strengthdeclines smoothly with increasing Qb, with more than 40% ofthe sample having Qb<=0.1. In the context of recurrent barformation, this suggests that strongly barred states are relativelyshort-lived compared to weakly barred or nonbarred states. We do notfind compelling evidence for a bimodal distribution of bar strengths.Instead, the distribution is fairly smooth in the range0.0<=Qb<0.8. Our analysis also provides a first look atspiral strengths Qs in the OSUBGS sample, based on the sametorque indicator. We are able to verify a possible weak correlationbetween Qs and Qb, in the sense that galaxies withthe strongest bars tend to also have strong spirals.

The Opacity of Spiral Galaxy Disks. IV. Radial Extinction Profiles from Counts of Distant Galaxies Seen through Foreground Disks
Dust extinction can be determined from the number of distant fieldgalaxies seen through a spiral disk. To calibrate this number for thecrowding and confusion introduced by the foreground image,González et al. and Holwerda et al. developed the Synthetic FieldMethod (SFM), which analyzes synthetic fields constructed by addingvarious deep exposures of unobstructed background fields to thecandidate foreground galaxy field. The advantage of the SFM is that itgives the average opacity for the area of a galaxy disk without makingassumptions about either the distribution of absorbers or of the diskstarlight. However, it is limited by poor statistics on the survivingfield galaxies, hence the need to combine a larger sample of fields.This paper presents the first results for a sample of 32 deep HubbleSpace Telescope (HST)/WFPC2 archival fields of 29 spiral galaxies. Theradial profiles of average dust extinction in spiral galaxies based oncalibrated counts of distant field galaxies is presented here, both forindividual galaxies and for composites from our sample. The effects ofinclination, spiral arms, and Hubble type on the radial extinctionprofile are discussed. The dust opacity of the disk apparently arisesfrom two distinct components: an optically thicker (AI=0.5-4mag) but radially dependent component associated with the spiral armsand a relatively constant optically thinner disk (AI~0.5mag). These results are in complete agreement with earlier work onocculted galaxies. The early-type spiral disks in our sample show lessextinction than the later types. Low surface brightness galaxies, andpossibly Sd's, appear effectively transparent. The average color of thefield galaxies seen through foreground disks does not appear to changewith radius or opacity. This gray behavior is most likely due to thepatchy nature of opaque clouds. The average extinction of a radialannulus and its average surface brightness seem to correlate for thebrighter regions. This leads to the conclusion that the brighter partsof the spiral disk, such as spiral arms, are also the ones with the mostextinction associated with them.

The opacity of spiral galaxy disks. VI. Extinction, stellar light and color
In this paper we explore the relation between dust extinction andstellar light distribution in disks of spiral galaxies. Extinctioninfluences our dynamical and photometric perception of disks, since itcan distort our measurement of the contribution of the stellarcomponent. To characterize the total extinction by a foreground disk,González et al. (1998, ApJ, 506, 152) proposed the "SyntheticField Method" (SFM), which uses the calibrated number of distantgalaxies seen through the foreground disk as a direct indication ofextinction. The method is described in González et al. (1998,ApJ, 506, 152) and Holwerda et al. (2005a, AJ, 129, 1381). To obtaingood statistics, the method was applied to a set of HST/WFPC2 fields(Holwerda et al. 2005b, AJ, 129, 1396) and radial extinction profileswere derived, based on these counts. In the present paper, we explorethe relation of opacity with surface brightness or color from 2MASSimages, as well as the relation between the scalelengths for extinctionand light in the I band. We find that there is indeed a relation betweenthe opacity (AI) and the surface brightness, particularly atthe higher surface brightnesses. No strong relation between nearinfrared (H-J, H-K) color and opacity is found. The scalelengths of theextinction are uncertain for individual galaxies but seem to indicatethat the dust distribution is much more extended than the stellar light.The results from the distant galaxy counts are also compared to thereddening derived from the Cepheids light-curves (Freedman et al. 2001,ApJ, 553, 47). The extinction values are consistent, provided theselection effect against Cepheids with higher values of AI istaken into account. The implications from these relations for diskphotometry, M/L conversion and galaxy dynamical modeling are brieflydiscussed.

The opacity of spiral galaxy disks. V. Dust opacity, HI distributions and sub-mm emission
The opacity of spiral galaxy disks, from counts of distant galaxies, iscompared to HI column densities. The opacity measurements are calibratedusing the "Synthetic Field Method" from González et al. (1998,ApJ, 506, 152), Holwerda et al. (2005a, AJ, 129, 1381). When comparedfor individual disks, the HI column density and dust opacity do not seemto be correlated as HI and opacity follow different radial profiles. Toimprove statistics, an average radial opacity profile is compared to anaverage HI profile. Compared to dust-to-HI estimates from theliterature, more extinction is found in this profile. This differencemay be accounted for by an underestimate of the dust in earliermeasurements due to their dependence on dust temperature. Since the SFMis insensitive to the dust temperature, the ratio between the SFMopacity and HI could very well be indicative of the true ratio. Earlierclaims for a radially extended cold dust disk were based on sub-mmobservations. A comparison between sub-mm observations and counts ofdistant galaxies is therefore desirable. We present the best currentexample of such a comparison, M 51, for which the measurements seem toagree. However, this remains an area where improved counts of distantgalaxies, sub-mm observations and our understanding of dust emissivityare needed.

The extragalactic Cepheid bias: significant influence on the cosmic distance scale
The unique measurements with the Hubble Space Telescope of Cepheidvariable stars in nearby galaxies led to extragalactic distances thatmade the HST Key Project conclude that the Hubble constant isH0 = 72 km s-1 Mpc-1. The idea thatH0 is now known is widely spread among the astronomicalcommunity. Some time ago, we suggested that a strong selection effectmay still exist in the Cepheid method, resulting in too short distances.Using a model similar to traditional bias corrections, we deduce herenew estimates of distances from HST and previous ground-basedobservations which are both affected by this effect, showing the sametrend which starts at different distances. The recent measurement of M83 with the VLT is unbiased. Revisiting the calibration of HSTKP's withour new scale, makes long-range distance criteria more concordant andreduces the value of H0 to ≈60 km s-1Mpc-1. Locally, the corrected Cepheid distances giveHlocal=56 km s-1 Mpc-1 and reduce thevelocity dispersion in the Hubble flow. These numbers are indicative ofthe influence of the suggested Cepheid bias in the context of the HSTKPstudies and are not final values.

Bar-induced perturbation strengths of the galaxies in the Ohio State University Bright Galaxy Survey - I
Bar-induced perturbation strengths are calculated for a well-definedmagnitude-limited sample of 180 spiral galaxies, based on the Ohio StateUniversity Bright Galaxy Survey. We use a gravitational torque method,the ratio of the maximal tangential force to the mean axisymmetricradial force, as a quantitative measure of the bar strength. Thegravitational potential is inferred from an H-band light distribution byassuming that the M/L ratio is constant throughout the disc. Galaxiesare deprojected using orientation parameters based on B-band images. Inorder to eliminate artificial stretching of the bulge, two-dimensionalbar-bulge-disc decomposition has been used to derive a reliable bulgemodel. This bulge model is subtracted from an image, the disc isdeprojected assuming it is thin, and then the bulge is added back byassuming that its mass distribution is spherically symmetric. We findthat removing the artificial bulge stretch is important especially forgalaxies having bars inside large bulges. We also find that the massesof the bulges can be significantly overestimated if bars are not takeninto account in the decomposition.Bars are identified using Fourier methods by requiring that the phasesof the main modes (m= 2, m= 4) are maintained nearly constant in the barregion. With such methods, bars are found in 65 per cent of the galaxiesin our sample, most of them being classified as SB-type systems in thenear-infrared by Eskridge and co-workers. We also suggest that as muchas ~70 per cent of the galaxies classified as SAB-types in thenear-infrared might actually be non-barred systems, many of them havingcentral ovals. It is also possible that a small fraction of the SAB-typegalaxies have weak non-classical bars with spiral-like morphologies.

The dispersion in the Cepheid period-luminosity relation and the consequences for the extragalactic distance scale
Using published Hubble Space Telescope (HST) Cepheid data from 25galaxies, we have found a correlation between the dispersion in theCepheid period-luminosity (P-L) relation and host galaxy metallicity,which is significant at the ~3σ level in the V band. In the I bandthe correlation is less significant, although the tighter intrinsicdispersion of the P-L relation in I may make it harder to detect such acorrelation in the HST sample. One possibility is that low metallicitygalaxies have smaller metallicity gradients than high metallicitygalaxies; if the Cepheid P-L relation has a significant dependence onmetallicity then this might explain the higher P-L dispersion in thehigher metallicity galaxies. A second possibility is that the increasedP-L dispersion is driven by metallicity dispersion but now due to arelation between metallicity and Cepheid colour rather than luminosity.A third possibility is that the increased P-L dispersion is caused by anincrease in the width of the instability strip with metallicity.Whatever the explanation, the high observed dispersions in the HSTCepheid P-L relations have the important consequence that the bias dueto incompleteness in the P-L relation at faint magnitudes is moresignificant than previously thought. Using a maximum likelihoodtechnique which takes into account the effect on the P-L relations oftruncation by consistently defined magnitude completeness limits, werederive the Cepheid distances to the 25 galaxies. In the case of thegalaxies with the highest P-L dispersion at the largest distances, wefind that the published distance modulus underestimates the truedistance modulus by up to ~0.5 mag.When both metallicity and magnitude incompleteness corrections are made,a scale error in the published Cepheid distances is seen in the sensethat the published distance moduli are increasingly underestimated atlarger distances. This results in the average distance modulus to thefour galaxies in the Virgo cluster core increasing from(m-M)0= 31.2 +/- 0.19 to (m-M)0= 31.4 +/- 0.19 ifthe γVI=-0.24 mag dex-1 metallicitycorrection of Kennicutt et al. is assumed. For the 18 HST galaxies withgood Tully-Fisher (TF) distances and (m-M)0 > 29.5 theCepheid-TF distance modulus average residual increases from 0.44 +/-0.09 to 0.63 +/- 0.1 mag with γVI=-0.24. This indicatesa significant scale error in TF distances, which reduces the previousPierce & Tully TF estimate of H0= 85 +/- 10 kms-1 Mpc-1 to H0= 63 +/- 7 kms-1 Mpc-1, assuming γVI=-0.24 anda still uncertain Virgo infall model. Finally, for the eight HSTgalaxies with Type Ia supernovae (SNIa), the metallicity andincompleteness corrected Cepheid distances marginally suggest there maybe a metallicity dependence of SNIa peak luminosity in the sense thatmetal-poor hosts have lower luminosity SNIa. Thus, SNIa Hubble diagramestimates of both H0 and q0 may therefore alsorequire significant corrections for metallicity, once the exact sizes ofthe Cepheid metallicity corrections become better established.

Classical Cepheids and the Distances of HST Program Galaxies
The distances of HST program galaxies are revised using the PL-relationswe have obtained previously along with a different method from thatemployed by Freedman et al. On the average, the resulting distances tothese galaxies have higher internal accuracies than those obtainedbefore by others. In addition, we have used no corrections formetallicity or for the incompleteness of the samples of classicalcepheids in deriving these distances. Despite this, our distance moduli,with a dispersion of ±0m.395, agree with those of Freedman et al.This indicates that these two effects have little or even no effect forthe samples of classical cepheids in the HST program galaxies.

A New Nonparametric Approach to Galaxy Morphological Classification
We present two new nonparametric methods for quantifying galaxymorphology: the relative distribution of the galaxy pixel flux values(the Gini coefficient or G) and the second-order moment of the brightest20% of the galaxy's flux (M20). We test the robustness of Gand M20 to decreasing signal-to-noise ratio (S/N) and spatialresolution and find that both measures are reliable to within 10% forimages with average S/N per pixel greater than 2 and resolutions betterthan 1000 and 500 pc, respectively. We have measured G andM20, as well as concentration (C), asymmetry (A), andclumpiness (S) in the rest-frame near-ultraviolet/optical wavelengthsfor 148 bright local ``normal'' Hubble-type galaxies (E-Sd) galaxies, 22dwarf irregulars, and 73 0.05

Inner-truncated Disks in Galaxies
We present an analysis of the disk brightness profiles of 218 spiral andlenticular galaxies. At least 28% of disk galaxies exhibit innertruncations in these profiles. There are no significant trends oftruncation incidence with Hubble type, but the incidence among barredsystems is 49%, more than 4 times that for nonbarred galaxies. However,not all barred systems have inner truncations, and not allinner-truncated systems are currently barred. Truncations represent areal dearth of disk stars in the inner regions and are not an artifactof our selection or fitting procedures nor the result of obscuration bydust. Disk surface brightness profiles in the outer regions are wellrepresented by simple exponentials for both truncated and nontruncateddisks. However, truncated and nontruncated systems have systematicallydifferent slopes and central surface brightness parameters for theirdisk brightness distributions. Truncation radii do not appear tocorrelate well with the sizes or brightnesses of the bulges. Thissuggests that the low angular momentum material apparently missing fromthe inner disk was not simply consumed in forming the bulge population.Disk parameters and the statistics of bar orientations in our sampleindicate that the missing stars of the inner disk have not simply beenredistributed azimuthally into bar structures. The sharpness of thebrightness truncations and their locations with respect to othergalactic structures suggest that resonances associated with diskkinematics, or tidal interactions with the mass of bulge stars, might beresponsible for this phenomenon.

Deprojecting spiral galaxies using Fourier analysis. Application to the Ohio sample
We use two new methods developed recently (Barberàet al.\cite{bar03}, A&A, 415, 849), as well as information obtained fromthe literature, to calculate the orientation parameters of the spiralgalaxies in the Ohio State University Bright Galaxy Survey. We comparethe results of these methods with data from the literature, and find ingeneral good agreement. We provide a homogeneous set of mean orientationparameters which can be used to approximately deproject the disks of thegalaxies and facilitate a number of statistical studies of galaxyproperties.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/421/595

Deprojecting spiral galaxies using Fourier analysis. Application to the Frei sample
We present two methods that can be used to deproject spirals, based onFourier analysis of their images, and discuss their potential andrestrictions. Our methods perform particularly well for galaxies moreinclined than 50° or for non-barred galaxies moreinclined than 35°. They are fast and straightforward touse, and thus ideal for large samples of galaxies. Moreover, they arevery robust for low resolutions and thus are appropriate for samples ofcosmological interest. The relevant software is available from us uponrequest. We use these methods to determine the values of the positionand inclination angles for a sample of 79 spiral galaxies contained inthe Frei et al. (\cite{frei96}) sample. We compare our results with thevalues found in the literature, based on other methods. We findstatistically very good agreementTable 7 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/415/849

Explosion energies, nickel masses and distances of Type II plateau supernovae
The hydrodynamical modelling of Type II plateau supernova (SNIIP) lightcurves predicts a correlation between three observable parameters(plateau duration, absolute magnitude and photospheric velocity at themiddle of the plateau) on the one hand, and three physical parameters(explosion energy E, mass of the envelope expelled and pre-supernovaradius R) on the other. The correlation is used, together with adopteddistances from the expanding photosphere method, to estimate and R for adozen well-observed SNIIP. For this set of supernovae, the resultingvalue of E varies within a factor of 6 (0.5 <~E/1051 erg<~ 3), whereas the envelope mass remains within the limits . Thepre-supernova radius is typically 200-600 Rsolar, but canreach >~1000 Rsolar for the brightest supernovae (e.g. SN1992am).A new method of determining the distance of SNIIP is proposed. It isbased on the assumption of a correlation between the explosion energy Eand the 56Ni mass required to power the post-plateau lightcurve tail through 56Co decay. The method is useful for SNIIPwith well-observed bolometric light curves during both the plateau andradioactive tail phases. The resulting distances and future improvementsare discussed.

The Relationship between Stellar Light Distributions of Galaxies and Their Formation Histories
A major problem in extragalactic astronomy is the inability todistinguish in a robust, physical, and model-independent way how galaxypopulations are physically related to each other and to their formationhistories. A similar, but distinct, and also long-standing question iswhether the structural appearances of galaxies, as seen through theirstellar light distributions, contain enough physical information tooffer this classification. We argue through the use of 240 images ofnearby galaxies that three model-independent parameters measured on asingle galaxy image reveal its major ongoing and past formation modesand can be used as a robust classification system. These parametersquantitatively measure: the concentration (C), asymmetry (A), andclumpiness (S) of a galaxy's stellar light distribution. When combinedinto a three-dimensional ``CAS'' volume all major classes of galaxies invarious phases of evolution are cleanly distinguished. We argue thatthese three parameters correlate with important modes of galaxyevolution: star formation and major merging activity. This is arguedthrough the strong correlation of Hα equivalent width andbroadband colors with the clumpiness parameter S, the uniquely largeasymmetries of 66 galaxies undergoing mergers, and the correlation ofbulge to total light ratios, and stellar masses, with the concentrationindex. As an obvious goal is to use this system at high redshifts totrace evolution, we demonstrate that these parameters can be measured,within a reasonable and quantifiable uncertainty with available data outto z~3 using the Hubble Space Telescope GOODS ACS and Hubble Deep Fieldimages.

Companions of Bright Barred Shapley-Ames Galaxies
Companion galaxy environment for a subset of 78 bright and nearby barredgalaxies from the Shapley-Ames Catalog is presented. Among the spiralbarred galaxies, there are Seyfert galaxies, galaxies with circumnuclearstructures, galaxies not associated with any large-scale galaxy cloudstructure, galaxies with peculiar disk morphology (crooked arms), andgalaxies with normal disk morphology; the list includes all Hubbletypes. The companion galaxy list includes the number of companiongalaxies within 20 diameters, their Hubble type, and projectedseparation distance. In addition, the companion environment was searchedfor four known active spiral galaxies, three of them are Seyfertgalaxies, namely, NGC 1068, NGC 1097, and NGC 5548, and one is astarburst galaxy, M82. Among the results obtained, it is noted that theonly spiral barred galaxy classified as Seyfert 1 in our list has nocompanions within a projected distance of 20 diameters; six out of 10Seyfert 2 bar galaxies have no companions within 10 diameters, six outof 10 Seyfert 2 galaxies have one or more companions at projectedseparation distances between 10 and 20 diameters; six out of 12 galaxieswith circumnuclear structures have two or more companions within 20diameters.

Revised positions for CIG galaxies
We present revised positions for the 1051 galaxies belonging to theKarachentseva Catalog of Isolated Galaxies (CIG). New positions werecalculated by applying SExtractor to the Digitized Sky Survey CIG fieldswith a spatial resolution of 1 arcsper 2. We visually checked theresults and for 118 galaxies had to recompute the assigned positions dueto complex morphologies (e.g. distorted isophotes, undefined nuclei,knotty galaxies) or the presence of bright stars. We found differencesbetween older and newer positions of up to 38 arcsec with a mean valueof 2 arcsper 96 relative to SIMBAD and up to 38 arcsec and 2 arcsper 42respectively relative to UZC. Based on star positions from the APMcatalog we determined that the DSS astrometry of five CIG fields has amean offset in (alpha , delta ) of (-0 arcsper 90, 0 arcsper 93) with adispersion of 0 arcsper 4. These results have been confirmed using the2MASS All-Sky Catalog of Point Sources. The intrinsic errors of ourmethod combined with the astrometric ones are of the order of 0 arcsper5.Full Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/411/391

The extra-galactic Cepheid distance scale from LMC and Galactic period-luminosity relations
In this paper, we recalibrate the Cepheid distance to some nearbygalaxies observed by the HST Key Project and the Sandage-Tammann-Sahagroup. We use much of the Key Project methodology in our analysis butapply new techniques, based on Fourier methods to estimate the mean of asparsely sampled Cepheid light curve, to published extra-galacticCepheid data. We also apply different calibrating PL relations toestimate Cepheid distances, and investigate the sensitivity of thedistance moduli to the adopted calibrating PL relation. We re-determinethe OGLE LMC PL relations using a more conservative approach and alsostudy the effect of using Galactic PL relations on the distance scale.For the Key Project galaxies after accounting for charge transfereffects, we find good agreement with an average discrepancy of -0.002and 0.075 mag when using the LMC and Galaxy, respectively, as acalibrating PL relation. For NGC 4258 which has a geometric distance of29.28 mag, we find a distance modulus of 29.44+/-0.06(random) mag, aftercorrecting for metallicity. In addition we have calculated the Cepheiddistance to 8 galaxies observed by the Sandage-Tammann-Saha group andfind shorter distance moduli by -0.178 mag (mainly due to the use ofdifferent LMC PL relations) and -0.108 mag on average again when usingthe LMC and Galaxy, respectively, as a calibrating PL relation. Howevercare must be taken to extrapolate these changed distances to changes inthe resulting values of the Hubble constant because STS also usedistances to NGC 3368 and 4414 and because STS calibration of SN Ia isoften decoupled from the distance to the host galaxy through their useof differential extinction arguments. We also calculate the distance toall these galaxies using PL relations at maximum light and find verygood agreement with mean light PL distances.However, after correcting for metallicity effects, the differencebetween the distance moduli obtained using the two sets of calibratingPL relations becomes negligible. This suggests that Cepheids in the LMCand Galaxy do follow different PL relations and constrains the sign forthe coefficient of the metallicity correction, gamma , to be negative,at least at the median period log (P) ~ 1.4, of the target galaxies.Full Table 1 is available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/411/361

Galaxy classification using fractal signature
Fractal geometry is becoming increasingly important in the study ofimage characteristics. For recognition of regions and objects in naturalscenes, there is always a need for features that are invariant and theyprovide a good set of descriptive values for the region. There are manyfractal features that can be generated from an image. In this paper,fractal signatures of nearby galaxies are studied with the aim ofclassifying them. The fractal signature over a range of scales proved tobe an efficient feature set with good discriminating power. Classifierswere designed using nearest neighbour method and neural networktechnique. Using the nearest distance approach, classification rate wasfound to be 92%. By the neural network method it has been found toincrease to 95%.

The bends in the slopes of radial abundance gradients in the disks of spiral galaxies - Do they exist?
Spiral galaxies with a reported bend in the slope of gradient in theoxygen abundances (O/H)R_23, derived with traditionally usedR23-method, were examined. It is shown that the artificialorigin of the reported bends can be naturally explained. Two situationsthat result in a false bend in the slope of (O/H)R_23gradient are indicated. It is concluded that at the present time thereis no example of a galaxy with an undisputable established bend in theslope of the oxygen abundance gradient.

The H I Line Width/Linear Diameter Relationship as an Independent Test of the Hubble Constant
The relationship between corrected H I line widths and linear diameters(LW/LD) for spiral galaxies is used as an independent check on the valueof the Hubble constant. After calibrating the Tully-Fisher (TF) relationin both the B and I bands, the B-band relation is used for galaxies ofmorphological/luminosity types Sc I, Sc I.2, Sc I.3, Sab, Sb, Sb I-II,and Sb II to derive the LW/LD relation. We find that for this sample thescatter in the LW/LD is smallest with a Hubble constant of 90-95 kms-1 Mpc-1. Lower values of the Hubble constantproduce a separation in the LW/LD relation that is a function ofmorphological type. Since a Hubble constant of 90-95 is significantlylarger than the final Key Project value of 72 km s-1Mpc-1, a comparison of TF, surface brightness fluctuation(SBF), and fundamental plane (FP) is made. This comparison indicatesthat the Key Project TF distances to 21 clusters may be too large. For asample of 11 clusters, the Key Project TF distances provide anunweighted mean Hubble constant of 77 km s-1Mpc-1, while a combination of the FP, SBF, and our TFdistances for the same 11 clusters gives H0=91 kms-1 Mpc-1. A more subtle result in our data is amorphological dichotomy in the Hubble constant. The data suggest that ScI galaxies follow a Hubble constant of 90-95 while Sb galaxies follow aHubble constant closer to 75 km s-1 Mpc-1.Possible explanations for this result are considered, but it is shownthat this Sb/Sc I Hubble flow discrepancy is also present in the VirgoCluster and is consistent with previous investigations that indicatethat some galaxies carry a component of age-related intrinsic redshift.

GHASP: A 3-D Survey of Spiral and Irregular Galaxies at Hα
Not Available

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Ursa Major
Right ascension:10h39m09.60s
Declination:+41°41'14.0"
Aparent dimensions:5.248′ × 2.818′

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 3319
HYPERLEDA-IPGC 31671

→ Request more catalogs and designations from VizieR