Contents
Images
Upload your image
DSS Images Other Images
Related articles
Forty Years of Spectroscopic Stellar Astrophysics in Japan The development of Japanese spectroscopic stellar astrophysics in therecent 40 years is reviewed from an observational point of view. In thisarticle, the research activities are provisionally divided into fourfields: hot stars, hot emission-line (Be) stars, cool stars, and otherstars. Historical developments of the observational facilities atOkayama Astrophysical Observatory (spectrographs and detectors) are alsosummarized in connection with the progress in scientific researchactivities.
| Analysis of the Na, Mg, Al, and Si Abundances in the Atmospheres of Red Giants of Different Spectral Subgroups We analyze the Na, Mg, Al, and Si abundances in the atmospheres of morethan 40 stars, includingred giants of different spectral subgroups(normal red giants, mild and classical barium stars) and severalsupergiants. All these elements exhibit abundance excesses, with theoverabundance increasing with the star’s luminosity. Thedependence of the overabundances for each of these elements on theluminosity (or log g) is the same for all the spectral subgroups,testifying to a common origin: they are all products of hydrogen burningin the NeNa and MgAl cycles that have been dredged up from the stellarinteriors to the outer atmospheric layers by convection that graduallydevelops during the star’s evolution from the main sequence to thered-giant stage. The sodium abundances derived for several stars arelower than for other stars with similar atmospheric parameters. The agesand kinematic characteristics of these two groups of stars suggest thatthey probably belong to different stellar generations.
| Statistical Constraints for Astrometric Binaries with Nonlinear Motion Useful constraints on the orbits and mass ratios of astrometric binariesin the Hipparcos catalog are derived from the measured proper motiondifferences of Hipparcos and Tycho-2 (Δμ), accelerations ofproper motions (μ˙), and second derivatives of proper motions(μ̈). It is shown how, in some cases, statistical bounds can beestimated for the masses of the secondary components. Two catalogs ofastrometric binaries are generated, one of binaries with significantproper motion differences and the other of binaries with significantaccelerations of their proper motions. Mathematical relations betweenthe astrometric observables Δμ, μ˙, and μ̈ andthe orbital elements are derived in the appendices. We find a remarkabledifference between the distribution of spectral types of stars withlarge accelerations but small proper motion differences and that ofstars with large proper motion differences but insignificantaccelerations. The spectral type distribution for the former sample ofbinaries is the same as the general distribution of all stars in theHipparcos catalog, whereas the latter sample is clearly dominated bysolar-type stars, with an obvious dearth of blue stars. We point outthat the latter set includes mostly binaries with long periods (longerthan about 6 yr).
| Astrometric orbits of SB^9 stars Hipparcos Intermediate Astrometric Data (IAD) have been used to deriveastrometric orbital elements for spectroscopic binaries from the newlyreleased Ninth Catalogue of Spectroscopic Binary Orbits(SB^9). This endeavour is justified by the fact that (i) theastrometric orbital motion is often difficult to detect without theprior knowledge of the spectroscopic orbital elements, and (ii) suchknowledge was not available at the time of the construction of theHipparcos Catalogue for the spectroscopic binaries which were recentlyadded to the SB^9 catalogue. Among the 1374 binaries fromSB^9 which have an HIP entry (excluding binaries with visualcompanions, or DMSA/C in the Double and Multiple Stars Annex), 282 havedetectable orbital astrometric motion (at the 5% significance level).Among those, only 70 have astrometric orbital elements that are reliablydetermined (according to specific statistical tests), and for the firsttime for 20 systems. This represents a 8.5% increase of the number ofastrometric systems with known orbital elements (The Double and MultipleSystems Annex contains 235 of those DMSA/O systems). The detection ofthe astrometric orbital motion when the Hipparcos IAD are supplementedby the spectroscopic orbital elements is close to 100% for binaries withonly one visible component, provided that the period is in the 50-1000 drange and the parallax is >5 mas. This result is an interestingtestbed to guide the choice of algorithms and statistical tests to beused in the search for astrometric binaries during the forthcoming ESAGaia mission. Finally, orbital inclinations provided by the presentanalysis have been used to derive several astrophysical quantities. Forinstance, 29 among the 70 systems with reliable astrometric orbitalelements involve main sequence stars for which the companion mass couldbe derived. Some interesting conclusions may be drawn from this new setof stellar masses, like the enigmatic nature of the companion to theHyades F dwarf HIP 20935. This system has a mass ratio of 0.98 but thecompanion remains elusive.
| Analysis of Atmospheric Abundances in Classical Barium Stars We present our analysis of elemental abundances in the atmospheres of 16classical barium stars derived from high-resolution spectra and modelatmospheres. Comparison of the results with analogous data for moderatebarium stars and normal red giants shows that the abundance patterns forelements before the iron peak are the same for all three groups of redgiants, testifying to a similar origin. For binary systems, we confirmthe influence of the orbital period and, hence, the componentseparation, on the overabundance of s-process elements. The amount ofenrichment in s-process elements is also influenced by mass,metallicity, and evolutionary phase. Any of these parameters can beimportant in individual objects.
| The Indo-US Library of Coudé Feed Stellar Spectra We have obtained spectra for 1273 stars using the 0.9 m coudéfeed telescope at Kitt Peak National Observatory. This telescope feedsthe coudé spectrograph of the 2.1 m telescope. The spectra havebeen obtained with the no. 5 camera of the coudé spectrograph anda Loral 3K×1K CCD. Two gratings have been used to provide spectralcoverage from 3460 to 9464 Å, at a resolution of ~1 Å FWHMand at an original dispersion of 0.44 Å pixel-1. For885 stars we have complete spectra over the entire 3460 to 9464 Åwavelength region (neglecting small gaps of less than 50 Å), andpartial spectral coverage for the remaining stars. The 1273 stars havebeen selected to provide broad coverage of the atmospheric parametersTeff, logg, and [Fe/H], as well as spectral type. The goal ofthe project is to provide a comprehensive library of stellar spectra foruse in the automated classification of stellar and galaxy spectra and ingalaxy population synthesis. In this paper we discuss thecharacteristics of the spectral library, viz., details of theobservations, data reduction procedures, and selection of stars. We alsopresent a few illustrations of the quality and information available inthe spectra. The first version of the complete spectral library is nowpublicly available from the National Optical Astronomy Observatory(NOAO) via ftp and http.
| Synthetic Lick Indices and Detection of α-enhanced Stars. II. F, G, and K Stars in the -1.0 < [Fe/H] < +0.50 Range We present an analysis of 402 F, G, and K solar neighborhood stars, withaccurate estimates of [Fe/H] in the range -1.0 to +0.5 dex, aimed at thedetection of α-enhanced stars and at the investigation of theirkinematical properties. The analysis is based on the comparison of 571sets of spectral indices in the Lick/IDS system, coming from fourdifferent observational data sets, with synthetic indices computed withsolar-scaled abundances and with α-element enhancement. We useselected combinations of indices to single out α-enhanced starswithout requiring previous knowledge of their main atmosphericparameters. By applying this approach to the total data set, we obtain alist of 60 bona fide α-enhanced stars and of 146 stars withsolar-scaled abundances. The properties of the detected α-enhancedand solar-scaled abundance stars with respect to their [Fe/H] values andkinematics are presented. A clear kinematic distinction betweensolar-scaled and α-enhanced stars was found, although a one-to-onecorrespondence to ``thin disk'' and ``thick disk'' components cannot besupported with the present data.
| Detection of elements beyond the Ba-peak in VLT+UVES spectra of post-AGB stars In this letter, we report on our successful systematic search for linesof elements beyond the Ba-peak in spectra of s-process enriched post-AGBstars. Using newly released atomic data from both the VALD database andthe D.R.E.A.M. project, we could derive abundances for several elementsheavier than europium for three objects, on the base of high qualityVLT+UVES spectra. The abundances of these elements are of particularinterest since they turn out to be powerful constraints for chemicalevolutionary AGB models. Their high abundances indicate that, also inonly moderately metal deficient AGB stars, production of lead isexpected to be significant.Based on observations collected at the European Southern Observatory,Paranal, Chile (ESO Programme 66.D-0171).
| Carbon-rich giants in the HR diagram and their luminosity function The luminosity function (LF) of nearly 300 Galactic carbon giants isderived. Adding BaII giants and various related objects, about 370objects are located in the RGB and AGB portions of the theoretical HRdiagram. As intermediate steps, (1) bolometric corrections arecalibrated against selected intrinsic color indices; (2) the diagram ofphotometric coefficients 1/2 vs. astrometric trueparallaxes varpi are interpreted in terms of ranges of photosphericradii for every photometric group; (3) coefficients CR andCL for bias-free evaluation of mean photospheric radii andmean luminosities are computed. The LF of Galactic carbon giantsexhibits two maxima corresponding to the HC-stars of the thick disk andto the CV-stars of the old thin disk respectively. It is discussed andcompared to those of carbon stars in the Magellanic Clouds and Galacticbulge. The HC-part is similar to the LF of the Galactic bulge,reinforcing the idea that the Bulge and the thick disk are part of thesame dynamical component. The CV-part looks similar to the LF of theLarge Magellanic Cloud (LMC), but the former is wider due to thesubstantial errors on HIPPARCOS parallaxes. The obtained meanluminosities increase with increasing radii and decreasing effectivetemperatures, along the HC-CV sequence of photometric groups, except forHC0, the earliest one. This trend illustrates the RGB- and AGB-tracks oflow- and intermediate-mass stars for a range in metallicities. From acomparison with theoretical tracks in the HR diagram, the initial massesMi range from about 0.8 to 4.0 Msun for carbongiants, with possibly larger masses for a few extreme objects. A largerange of metallicities is likely, from metal-poor HC-stars classified asCH stars on the grounds of their spectra (a spheroidal component), tonear-solar compositions of many CV-stars. Technetium-rich carbon giantsare brighter than the lower limit Mbol =~ -3.6+/- 0.4 andcentered at =~-4.7+0.6-0.9 at about =~(2935+/-200) K or CV3-CV4 in our classification. Much like the resultsof Van Eck et al. (\cite{vaneck98}) for S stars, this confirms theTDU-model of those TP-AGB stars. This is not the case of the HC-stars inthe thick disk, with >~ 3400 K and>~ -3.4. The faint HC1 and HC2-stars( =~ -1.1+0.7-1.0) arefound slightly brighter than the BaII giants ( =~-0.3+/-1.3) on average. Most RCB variables and HdC stars range fromMbol =~ -1 to -4 against -0.2 to -2.4 for those of the threepopulation II Cepheids in the sample. The former stars show the largestluminosities ( <~ -4 at the highest effectivetemperatures (6500-7500 K), close to the Mbol =~ -5 value forthe hot LMC RCB-stars (W Men and HV 5637). A full discussion of theresults is postponed to a companion paper on pulsation modes andpulsation masses of carbon-rich long period variables (LPVs; Paper IV,present issue). This research has made use of the Simbad databaseoperated at CDS, Strasbourg, France. Partially based on data from theESA HIPPARCOS astrometry satellite. Table 2 is only available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/390/967
| Absolute spectrophotometry of late-type stars. Not Available
| Nucleosynthesis and Mixing on the Asymptotic Giant Branch. III. Predicted and Observed s-Process Abundances We present the results of s-process nucleosynthesis calculations forasymptotic giant branch (AGB) stars of different metallicities anddifferent initial stellar masses (1.5 and 3 Msolar), and wepresent comparisons of them with observational constraints fromhigh-resolution spectroscopy of evolved stars over a wide metallicityrange. The computations were based on previously published stellarevolutionary models that account for the third dredge-up phenomenonoccurring late on the AGB. Neutron production is driven by the13C(α,n)16O reaction during the interpulseperiods in a tiny layer in radiative equilibrium at the top of the He-and C-rich shell. The neutron source 13C is manufacturedlocally by proton captures on the abundant 12C; a few protonsare assumed to penetrate from the convective envelope into the radiativelayer at any third dredge-up episode, when a chemical discontinuity isestablished between the convective envelope and the He- and C-richzones. A weaker neutron release is also guaranteed by the marginalactivation of the reaction 22Ne(α,n)25Mgduring the convective thermal pulses. Owing to the lack of a consistentmodel for 13C formation, the abundance of 13Cburnt per cycle is allowed to vary as a free parameter over a wideinterval (a factor of 50). The s-enriched material is subsequently mixedwith the envelope by the third dredge-up, and the envelope compositionis computed after each thermal pulse. We follow the changes in thephotospheric abundance of the Ba-peak elements (heavy s [hs]) and thatof the Zr-peak ones (light s [ls]), whose logarithmic ratio [hs/ls] hasoften been adopted as an indicator of the s-process efficiency (e.g., ofthe neutron exposure). Our model predictions for this parameter show acomplex trend versus metallicity. Especially noteworthy is theprediction that the flow along the s-path at low metallicities drainsthe Zr and Ba peaks and builds an excess at the doubly magic208Pb, which is at the termination of the s-path. We thendiscuss the effects on the models of variations in the crucialparameters of the 13C pocket, finding that they are notcritical for interpreting the results. The theoretical predictions arecompared with published abundances of s-elements for AGB giants ofclasses MS, S, SC, post-AGB supergiants, and for various classes ofbinary stars, which supposedly derive their composition by mass transferfrom an AGB companion. This is done for objects belonging both to theGalactic disk and to the halo. The observations in general confirm thecomplex dependence of neutron captures on metallicity. They suggest thata moderate spread exists in the abundance of 13C that isburnt in different stars. Although additional observations are needed,it seems that a good understanding has been achieved of s-processoperation in AGB stars. Finally, the detailed abundance distributionincluding the light elements (CNO) of a few s-enriched stars atdifferent metallicities are examined and satisfactorily reproduced bymodel envelope compositions.
| Speckle Interferometry of New and Problem Hipparcos Binaries. II. Observations Obtained in 1998-1999 from McDonald Observatory The Hipparcos satellite made measurements of over 9734 known doublestars, 3406 new double stars, and 11,687 unresolved but possible doublestars. The high angular resolution afforded by speckle interferometrymakes it an efficient means to confirm these systems from the ground,which were first discovered from space. Because of its coverage of adifferent region of angular separation-magnitude difference(ρ-Δm) space, speckle interferometry also holds promise toascertain the duplicity of the unresolved Hipparcos ``problem'' stars.Presented are observations of 116 new Hipparcos double stars and 469Hipparcos ``problem stars,'' as well as 238 measures of other doublestars and 246 other high-quality nondetections. Included in these areobservations of double stars listed in the Tycho-2 Catalogue andpossible grid stars for the Space Interferometry Mission.
| The Chemical Composition and Orbital Parameters of Barium Stars Not Available
| Ultraviolet Emission Lines in BA and Non-BA Giants With the Hubble Space Telescope (HST) and the Goddard High ResolutionSpectrograph we have observed four barium and three weak barium stars inthe ultraviolet spectral region, together with two nonpeculiar giantstandard stars. An additional suspected Ba star was observed with HSTand the Space Telescope Imaging Spectrograph. In the H-R diagram, threeof the observed Ba stars lie on the same evolutionary tracks as theHyades giants. Using International Ultraviolet Explorer (IUE) spectra ofpreviously studied giants together with our HST spectra, we investigatewhether the chromospheric and transition layer emission-line spectra ofthe Ba stars are different from those of nonpeculiar giants and fromthose of giants with peculiar carbon and/or nitrogen abundances. Exceptfor the Ba star HD 46407 and the suspected Ba star HD 65699, the Ba starand mild Ba star emission-line fluxes are, for a given effectivetemperature and for a given luminosity, lower than those for thenonpeculiar giants observed with IUE. In comparison with theHST-observed standard stars, the C IV λ1550-to-C II λ1335line flux ratios are smaller, but not necessarily so in comparison withall IUE-observed nonpeculiar giants. However, the C IV-to-C II line fluxratios for the Ba stars decrease with increasing carbon abundances. Thisshows that the energy balance in the lower transition layer isinfluenced by the carbon abundance. The temperature gradient appears tobe smaller in the C II line-emitting region. There does not seem to be adifference in chromospheric electron densities for the Ba and non-Bastars, though this result is rather uncertain. Based on observationswith the NASA/ESA Hubble Space Telescope obtained at the Space TelescopeScience Institute, which is operated by the Association of Universitiesfor Research in Astronomy, Inc., under NASA contract NAS 5-26555.
| Do All BA II Stars Have White Dwarf Companions? With the Hubble Space Telescope (HST) and the Goddard High ResolutionSpectrograph (GHRS) we have observed four barium stars, three mildbarium stars, and one weak G-band star in the ultraviolet spectralregion. One barium star was observed with HST and the Space TelescopeImaging Spectrograph (STIS). The aim was to check the hypothesis thatall these peculiar stars have white dwarf (WD) companions, which attheir asymptotic giant branch phase transferred mass with peculiarelement abundances to the present barium and CH peculiar stars. Assumingthat the ultraviolet continua of the cool giants, including the bariumstars, are generated in their chromospheres and that the relationsbetween the continua and the emission lines created in the chromospheresand transition layers are similar in field giants and barium stars, wefound that, indeed, most of our target barium and weak barium starsappear to have excess flux in the UV when compared to standard giantstars. For most of the stars the excess flux can be attributed to WDcompanions with temperatures between 10,000 and 12,000 K, if the WD massis about 0.6 Msolar. Cooling times for the WDs were derivedfrom their effective temperatures and model calculations by M. Wood. Thecalculated cooling times are longer than the lifetimes of the bariumstars on the giant branch. For our target stars the mass transfertherefore happened while they were still on the main sequence. For twoof the mild barium stars and one or perhaps two barium stars the derivedcooling times for the WD companions come out to be longer than the totalevolutionary times of the barium stars as calculated by Schaller et al.If our derivations are correct (the error bars are rather large) theneither evolutionary models with larger convective overshoot have to beused for the barium stars or the cooling times of the white dwarfs haveto be revised downward. Possibly an additional (as yet unknown) coolingmechanism has to be considered? The weak G-band star HD 165634, whichhas a carbon underabundance of about a factor of 10, also appears tohave a WD companion. We discuss the implications of this very low carbonabundance. Based on observations with the NASA/ESA Hubble SpaceTelescope obtained at the Space Telescope Science Institute, which isoperated by the Association of Universities for Research in Astronomy.Incorporated, under NASA contract NAS5-26555.
| Re-processing the Hipparcos Transit Data and Intermediate Astrometric Data of spectroscopic binaries. I. Ba, CH and Tc-poor S stars Only 235 entries were processed as astrometric binaries with orbits inthe Hipparcos and Tycho Catalogue (\cite{Hipparcos}). However, theIntermediate Astrometric Data (IAD) and Transit Data (TD) made availableby ESA make it possible to re-process the stars that turned out to bespectroscopic binaries after the completion of the Catalogue. This paperillustrates how TD and IAD may be used in conjunction with the orbitalparameters of spectroscopic binaries to derive astrometric parameters.The five astrometric and four orbital parameters (not already known fromthe spectroscopic orbit) are derived by minimizing an objective function(chi 2) with an algorithm of global optimization. This codehas been applied to 81 systems for which spectroscopic orbits becameavailable recently and that belong to various families ofchemically-peculiar red giants (namely, dwarf barium stars, strong andmild barium stars, CH stars, and Tc-poor S stars). Among these 81systems, 23 yield reliable astrometric orbits. These 23 systems make itpossible to evaluate on real data the so-called ``cosmic error''described by Wielen et al. (1997), namely the fact that an unrecognizedorbital motion introduces a systematic error on the proper motion.Comparison of the proper motion from the Hipparcos catalogue with thatre-derived in the present work indicates that the former are indeed faroff the present value for binaries with periods in the range 3 to ~ 8years. Hipparcos parallaxes of unrecognized spectroscopic binaries turnout to be reliable, except for systems with periods close to 1 year, asexpected. Finally, we show that, even when a complete orbital revolutionwas observed by Hipparcos, the inclination is unfortunately seldomprecise. Based on observations from the Hipparcos astrometric satelliteoperated by the European Space Agency (ESA 1997).
| The heavy-element abundances of AGB stars and the angular momentum conservation model of wind accretion for barium stars Adopting new s-process nucleosynthesis scenario and branch s-processpath, we calculate the heavy-element abundances of solar metallicity3Msun thermal pulse asymptotic giant branch (hereafterTP-AGB) stars, and then discuss the correlation between heavy-elementabundances and C/O ratio. 13C(alpha ,n)16Oreaction is the major neutron source, which is released in radiativecondition during the interpulse period, hence gives rise to an efficients-processing that depends on the 13C profile in the13C pocket. A second small neutron burst from 22Nesource marginally operates during convective pulses over previouslys-processed material diluted with fresh Fe seed and H-burning ashes. Thecalculated heavy-element abundances and C/O ratio on the surfaces of AGBstars are compared with the observations of MS, S and C (N-type) stars.The observations are characterized by a spread in neutron exposures:0.5-2.5 times of the corresponding exposures reached in the three zonesof the 13C pocket showed by Fig. 1 of Gallino et al. (1998).The evolutionary sequence from M to S to C stars is explained naturallyby the calculated heavy-element abundances and C/O ratio. Then theheavy-element abundances on the surfaces of TP-AGB stars are used tocalculate the heavy-element overabundances of barium stars, which aregenerally believed to belong to binary systems and their heavy-elementoverabundances are produced by the accreting material from thecompanions (the former TP-AGB stars and the present white dwarfs). Toachieve this, firstly, the change equations of binary orbital elementsare recalculated by taking the angular momentum conservation in place ofthe tangential momentum conservation, and the change of delta r/r termis considered; then the heavy-element overabundances of barium stars arecalculated, in a self-consistent manner, through wind accretion duringsuccessive pulsed mass ejection, followed by mixing. The calculatedrelationships of heavy-element abundances to orbital periods P of bariumstars can fit the observations within the error ranges. Moreover, thecalculated abundances of nuclei of different atomic charge Z,corresponding to different neutron exposures of TP-AGB stars, can fitthe observational heavy-element abundances of 14 barium stars in theerror ranges. Our results suggest that the barium stars with longerorbital period P>1600 d may form through accreting part of the ejectafrom the intrinsic AGB stars through stellar wind, and the massaccretion rate is in the range of 0.1-0.5 times of Bondi-Hoyle'saccretion rate. Those with shorter orbital period P<600 d may beformed through other scenarios: dynamically stable late case C masstransfer or common envelope ejection.
| Speckle Interferometry of New and Problem HIPPARCOS Binaries The ESA Hipparcos satellite made measurements of over 12,000 doublestars and discovered 3406 new systems. In addition to these, 4706entries in the Hipparcos Catalogue correspond to double star solutionsthat did not provide the classical parameters of separation and positionangle (rho,theta) but were the so-called problem stars, flagged ``G,''``O,'' ``V,'' or ``X'' (field H59 of the main catalog). An additionalsubset of 6981 entries were treated as single objects but classified byHipparcos as ``suspected nonsingle'' (flag ``S'' in field H61), thusyielding a total of 11,687 ``problem stars.'' Of the many ground-basedtechniques for the study of double stars, probably the one with thegreatest potential for exploration of these new and problem Hipparcosbinaries is speckle interferometry. Results are presented from aninspection of 848 new and problem Hipparcos binaries, using botharchival and new speckle observations obtained with the USNO and CHARAspeckle cameras.
| A re-analysis of the heavy-element abundance of barium stars. Not Available
| Catalogs of temperatures and [Fe/H] averages for evolved G and K stars A catalog of mean values of [Fe/H] for evolved G and K stars isdescribed. The zero point for the catalog entries has been establishedby using differential analyses. Literature sources for those entries areincluded in the catalog. The mean values are given with rms errors andnumbers of degrees of freedom, and a simple example of the use of thesestatistical data is given. For a number of the stars with entries in thecatalog, temperatures have been determined. A separate catalogcontaining those data is briefly described. Catalog only available atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html
| Insights into the formation of barium and Tc-poor S stars from an extended sample of orbital elements The set of orbital elements available for chemically-peculiar red giant(PRG) stars has been considerably enlarged thanks to a decade-longCORAVEL radial-velocity monitoring of about 70 barium stars and 50 Sstars. When account is made for the detection biases, the observedbinary frequency among strong barium stars, mild barium stars andTc-poor S stars (respectively 35/37, 34/40 and 24/28) is compatible withthe hypothesis that they are all members of binary systems. Thesimilarity between the orbital-period, eccentricity and mass-functiondistributions of Tc-poor S stars and barium stars confirms that Tc-poorS stars are the cooler analogs of barium stars. A comparative analysisof the orbital elements of the various families of PRG stars, and of asample of chemically-normal, binary giants in open clusters, revealsseveral interesting features. The eccentricity - period diagram of PRGstars clearly bears the signature of dissipative processes associatedwith mass transfer, since the maximum eccentricity observed at a givenorbital period is much smaller than in the comparison sample of normalgiants. be held The mass function distribution is compatible with theunseen companion being a white dwarf (WD). This lends support to thescenario of formation of the PRG star by accretion of heavy-element-richmatter transferred from the former asymptotic giant branch progenitor ofthe current WD. Assuming that the WD companion has a mass in the range0.60+/-0.04 Msb ȯ, the masses of mild and strong barium starsamount to 1.9+/-0.2 and 1.5+/-0.2 Msb ȯ, respectively. Mild bariumstars are not restricted to long-period systems, contrarily to what isexpected if the smaller accretion efficiency in wider systems were thedominant factor controlling the pollution level of the PRG star. Theseresults suggest that the difference between mild and strong barium starsis mainly one of galactic population rather than of orbital separation,in agreement with their respective kinematical properties. There areindications that metallicity may be the parameter blurring the period -Ba-anomaly correlation: at a given orbital period, increasing levels ofheavy-element overabundances are found in mild barium stars, strongbarium stars, and Pop.II CH stars, corresponding to a sequence ofincreasingly older, i.e., more metal-deficient, populations. PRG starsthus seem to be produced more efficiently in low-metallicitypopulations. Conversely, normal giants in barium-like binary systems mayexist in more metal-rich populations. HD 160538 (DR Dra) may be such anexample, and its very existence indicates at least that binarity is nota sufficient condition to produce a PRG star. This paper is dedicated tothe memory of Antoine Duquennoy, who contributed many among theobservations used in this study
| The Tokyo PMC catalog 90-93: Catalog of positions of 6649 stars observed in 1990 through 1993 with Tokyo photoelectric meridian circle The sixth annual catalog of the Tokyo Photoelectric Meridian Circle(PMC) is presented for 6649 stars which were observed at least two timesin January 1990 through March 1993. The mean positions of the starsobserved are given in the catalog at the corresponding mean epochs ofobservations of individual stars. The coordinates of the catalog arebased on the FK5 system, and referred to the equinox and equator ofJ2000.0. The mean local deviations of the observed positions from theFK5 catalog positions are constructed for the basic FK5 stars to comparewith those of the Tokyo PMC Catalog 89 and preliminary Hipparcos resultsof H30.
| S-process element overabundances of BA stars through wind accretion. Not Available
| A catalogue of [Fe/H] determinations: 1996 edition A fifth Edition of the Catalogue of [Fe/H] determinations is presentedherewith. It contains 5946 determinations for 3247 stars, including 751stars in 84 associations, clusters or galaxies. The literature iscomplete up to December 1995. The 700 bibliographical referencescorrespond to [Fe/H] determinations obtained from high resolutionspectroscopic observations and detailed analyses, most of them carriedout with the help of model-atmospheres. The Catalogue is made up ofthree formatted files: File 1: field stars, File 2: stars in galacticassociations and clusters, and stars in SMC, LMC, M33, File 3: numberedlist of bibliographical references The three files are only available inelectronic form at the Centre de Donnees Stellaires in Strasbourg, viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5), or viahttp://cdsweb.u-strasbg.fr/Abstract.html
| Barium stars, galactic populations and evolution. In this paper HIPPARCOS astrometric and kinematical data together withradial velocities from other sources are used to calibrate bothluminosity and kinematics parameters of Ba stars and to classify them.We confirm the results of our previous paper (where we used data fromthe HIPPARCOS Input Catalogue), and show that Ba stars are aninhomogeneous group. Five distinct classes have been found i.e. somehalo stars and four groups belonging to disk population: roughlysuper-giants, two groups of giants (one on the giant branch, the otherat the clump location) and dwarfs, with a few subgiants mixed with them.The confirmed or suspected duplicity, the variability and the range ofknown orbital periods found in each group give coherent resultssupporting the scenario for Ba stars that are not too highly massivebinary stars in any evolutionary stages but that all were previouslyenriched with Ba from a more evolved companion. The presence in thesample of a certain number of ``false'' Ba stars is confirmed. Theestimates of age and mass are compatible with models for stars with astrong Ba anomaly. The mild Ba stars with an estimated mass higher than3Msun_ may be either stars Ba enriched by themselves or``true'' Ba stars, which imposes new constraints on models.
| The barium stars in the Hertzsprung-Russel diagram. We present absolute magnitudes for a sample of 52 barium stars observedby the HIPPARCOS satellite, and their location in the HR diagram. Ourplot (Fig. 1) is restricted to stars with parallax accuracies betterthan 22%. The luminosity classes range from Ib supergiants down to Vdwarfs on the main sequence, as expected from spectral classificaiton.Discrepancies are however notes. No gap is observed in the regionextending from the main sequence to the giant branch, excatly as shownby Perryman et al. (1995A&A...304...69P) for normal stars. This isalso true for class II bright giants. A clump is however obvious atG8-K0 IIIb and M_V_~0. 85 which correspond to the one noted as (B-V)~1.0and M_Hp_~1.0 by Perryman et al. It appears that barium stars on themain sequence are earlier than G4, upward evolution being noticeable forlater types. They are also distributed in the subgiant zone followingthe locus of normal stars, i.e. increasing brightness for later types. Afew stars in our sample are also classified as CH stars: four of themare definitely main sequence class V-dwarfs, one is a class IVb faintsubgiant while two possible CH-stars are class III-giants. These resultsare consistent with the currently-admitted model of surface pollution ofa normal star through mass transfer in a binary system whose primary hasbecome a white dwarf (WD). HIPPARCOS data show perturbations of theastrometric solution which can be attributed to proved (or possible)binarity for 21 stars our of 121, and 8 of them were already quoted inthe CCDM catalogue (not necessarily with a WD component). This lowproportion can be explained by the 5-11 magnitudes differences predictedbetween the two components and/or low angular separation with periodsclose to one year.
| Absolute magnitudes and kinematics of barium stars. The absolute magnitude of barium stars has been obtained fromkinematical data using a new algorithm based on the maximum-likelihoodprinciple. The method allows to separate a sample into groupscharacterized by different mean absolute magnitudes, kinematics andz-scale heights. It also takes into account, simultaneously, thecensorship in the sample and the errors on the observables. The methodhas been applied to a sample of 318 barium stars. Four groups have beendetected. Three of them show a kinematical behaviour corresponding todisk population stars. The fourth group contains stars with halokinematics. The luminosities of the disk population groups spread alarge range. The intrinsically brightest one (M_v_=-1.5mag,σ_M_=0.5mag) seems to be an inhomogeneous group containing bariumbinaries as well as AGB single stars. The most numerous group (about 150stars) has a mean absolute magnitude corresponding to stars in the redgiant branch (M_v_=0.9mag, σ_M_=0.8mag). The third group containsbarium dwarfs, the obtained mean absolute magnitude is characteristic ofstars on the main sequence or on the subgiant branch (M_v_=3.3mag,σ_M_=0.5mag). The obtained mean luminosities as well as thekinematical results are compatible with an evolutionary link betweenbarium dwarfs and classical barium giants. The highly luminous group isnot linked with these last two groups. More high-resolutionspectroscopic data will be necessary in order to better discriminatebetween barium and non-barium stars.
| A New Version of the Catalog of CH and Related Stars (CH95 Catalog) A new version of the catalog of CH and related stars contains 244 fieldstars and 17 globular cluster stars. Here a list of these stars withtheir coordinates, their positions in the HR diagram and somestatistical diagrams is presented. The catalog will soon be available inthe printed and computerized versions.
| Classification of Population II Stars in the Vilnius Photometric System. I. Methods The methods used for classification of Population II stars in theVilnius photometric system are described. An extensive set of standardswith known astrophysical parameters compiled from the literature sourcesis given. These standard stars are classified in the Vilnius photometricsystem using the methods described. The accuracy of classification isevaluated by a comparison of the astrophysical parameters derived fromthe Vilnius photometric system with those estimated from spectroscopicstudies as well as from photometric data in other systems. For dwarfsand subdwarfs, we find a satisfactory agreement between our reddeningsand those estimated in the uvbyscriptstyle beta system. The standarddeviation of [Fe/H] deter mined in the Vilnius system is about 0.2 dex.The absolute magnitude for dwarfs and subdwarfs is estimated with anaccuracy of scriptstyle <=0.5 mag.
| On the Problem of Selective Enhancement of Barium in the Atmospheres of BaII Stars Not Available
|
Submit a new article
Related links
Submit a new link
Member of following groups:
|
Observation and Astrometry data
Constellation: | Cepheus |
Right ascension: | 02h47m47.60s |
Declination: | +81°26'54.0" |
Apparent magnitude: | 5.78 |
Distance: | 152.905 parsecs |
Proper motion RA: | 10.1 |
Proper motion Dec: | -74.8 |
B-T magnitude: | 7.486 |
V-T magnitude: | 5.93 |
Catalogs and designations:
|